JRC Research Report No. 90-18
June 1988 through May 1990

Network, System, and Status Software
Enhancements for the Autonomously Managed
Electrical Power System Breadboard

Protocol Specification
Grant NAG8-720

Volume 2 of 4 Volumes

Prepared by

James W. McKee
University of Alabama, Huntsville
Huntsville, Alabama 35899
(205) 895-6257

Prepared for

Norma Whitehead
EB12
NASA/MSFC
Huntsville, Alabama



Table of Contents

1. PULPOSE . + v ¢ o o o s s s o o o
2. Introduction . . .« .+ « ¢ + + e e e . . s
3. Power System Description

4, Protocol Requirements . . . . . . . . .

5. Protocol Description . . . . . . . . .« « . .

6. References . . . . . . . . « .

Appendix A Protocol Specification . . . . . . . .

7. Protocol Definitions . . . . . .+ « < « o < &

general . . . . 4 o e e e e e e e e e e
addresses . . . . . e 4 e e e e e .
AYTAYS o o o o o o o s e e e e e e e e s
array pointers e e e e e e e e e e e e
blocks e e e e e e e e e e e e e e e e
constants . . . 4 4 e e e e e e e e e e
fields . . . . ¢ ¢ « ¢ « « « e e e e
flags . « ¢ v i e e e e e e e e
Numbers . . .« +« ¢« « « « o « «
Offsets . . . e e e e e s e e e e e e
stacks and queues e e e e e e e e e e e
stack pointers . . . . . e e e e .

subroutine calls to the Kernel e e e e e .
8. Protocol design specification .
8.6. The description of the protocol
General information . o e
Initialization . . . . . . .

Transmit State . . . . . . . . .

Clean up State . . . . . . .

Receive State . . . . . . . .

Timeout State . . . . ¢« « + « « o o+
Table 1 Packet Format . . . . « +« « « « « « + .
Table 2 Station names . . ¢ « « « « « « o o
Table 3 Transmit Control Block . . . . . . . .
Table 4 Receive Control Block e e e e e e e
Table 5 Time Out Control Block . . . . . . . .
Table 6 Initialization Command Block . . .
Table 7 Initialization Response Block .
Table 8 Status Control Block .
Figure 1 Data Flow Diagram -- Transmlt Protocol
Figure 2 Data Flow Diagram -- Receive Protocol
Figure 3 Data Flow Diagram -- Time out Protocol

9. Appendix B Structured Flow Diagrams of Protocol

2

10

11
11
11
12
12
12
12
13
13
14
14
15
15
16
17
18
19
19
19
21
21
22
24
26
27
27
28
28
29
30
30
31
32
33

34



9.

O W
w N

.1.

5.

Stack and Queue initialization definitions

9.1.1. Stack . . .+« v e s e e e e e e e

9.1.2. Queue . . . . . . . e e e e e e e e e e
Definition of [ ] operator e e e e e e e e e e
Functions operating on stacks . . . . . . . . . .
9.3.1. General Push and Pop functions . . . . . .

9.3.1.1. PUSH procedure . . . . . « . .
9.3.1.2. POP procedure . .

2. PUSH POP ITCBSk

3. PUSH POP IBSk . . . .

4. LOCK IBS and UNLOCK IBS e e e e e
.5. PUSH._. “ANASkK . . . . e e e e e e e e e
General operations on Queues .

1 Join QUEUE procedure (QUEUE IN) e e e s
2. Serve QUEUE procedure (QUEUE_ OUT) e e e
3. ENTER_QUEUE and DELETE QUEUE e e . . e .
9.4.3.1.  ENTER _QUEUE . . . . . . . .
9.4.3.2. DELETE _QUEUE . . . . . .

9.4.4. Test CIRCULAR QUEUE Operatlon

9.4.4.1. EMPTY Function . . . . . . . « . .
9.4.4.2. FULL Function . . . . . « « « « .
9.4.5. JOIN and SERVE operation on QUEUE . . . .
9.4.5.1. QUEUE_IN OUT CBSk . . . . . . . . .
9.4.5.2. QUEUE_IN_OUT RCBSk . . . .« « « « .
9.4.5.3 QUEUE IN OUT WFASk . . . o .

AMPS Communication Network Structured Flcw Dlagram

9.5.1. Top level flow diagram . . . . . .« . . .« =«

9.5.2. -- Level 1 INITIALIZATION . . . . « « « =
9.5.2.1. -- Level 1.1 Make STACKS ..
9.5.2.2. -- Level 1.2 Make QUEUES
9.5.2.3. —- Level 1.3 Make BUFFERS . . . . .

9.5.2.3.1. -- Level 1.3.1 make RCBk
buffer . . . .+ ¢« « + + « e o e e
9.5.2.3.2. -- Level 1.3.2 make TCBk
buffer . e e e e e e e e e e e
9.5.2.3.3. -- Level 1.3.3 make IBSBk
buffer . e e e e e
9.,5.2.4. -- Level 1.4 Form ICBk
9.5.2.5. -- Level 1.5 Read and Store kernel
subroutine addresses . .
9.5.2.6. =-- Level 1.6 call Kernel Recelve
Ring Fill . . . e e e e e .
9.5.2.7. -- Level 1.7 KRNLINIT .
9.5.2.8. -- Level 1.8 Start transmltter
timeout . . . . . .+ . < . .

9.5.3. -- Level 2. RECEIVE STATE . « e e e
9.5.3.1. --— Level 2.1 RECEIVE ACK . . . .
9.5.3.2. -- Level 2.2 RECEIVE CCn . .

9.5.3.2.1, -- Level 2.2.1 CHECK COMMAND
9.5.3.2.1.1. -- Level 2.2.1.1
GENERATE ACK . . . e e e .

9.5.3.3. -- Level 2.3 RECEIVE NICn .

3

34
34
34
35
35
35
35

37
38
39
40
41
41
42
43
43
44
45
45
45
46
46
47
48
49
49
50
51
52
53

54
55

56
57

57

58
59

60
61
62
64

65
66



9.5.3.3.1. -- Level 2.3.1 CHECK ANASk

9.5.3.3.2. -- Level 2.3.2 CHECK NICn .

9.5.3.3.3. - - Level 2.3.3

CLEAR_PROTOCOL . e e .

9.5.4. -- Level 3. TRANSMIT STATE . . .

9.5.4.1. -- Level 3.1 MAKE PACKET . . . .
9.5.4.1.1. -- Level 3.1.1 SEARCH_ANAS

9.5.5. -- Level 4. CLEAN UP STATE . e e e .

9.5.6. -- Level 5. TIMEOUT STATE .

10. Appendix C Protocol source code in FORTH

67
68

69
70
71
72
73
74
74

75



1. Purpose

This wvolume contains the specification, structured flow
charts, and code listing for the protocol.

2. Introduction

The purpose of an autonomous power system on a spacecraft is
to relieve humans (on the ground or in the craft) from having to
continuously monitor and control the generation, storage and
distribution of power in the craft. This implies that
algorithms will have been developed to monitor and control the
power system. The power system will contain computers on which
the algorithms run. Studies, [1],[2], indicate that these
computers should be physically close to the hardware they monitor
and/or control. The studies also indicate that there should be
one central computer system that makes the high level decisions
and sends commands to and receives data from the other
distributed computers. This will require a communications
network and an efficient protocol by which the computers will
communicate.

One of the major requirements on the protocol is that it be
"real time" because of the need to control the power elements.
This implies a simple protocol, short messages, and as much of
the protocol implemented in dedicated hardware as possible.

The objective of this introduction 1is to present in a
logical fashion the considerations that led to the design and
development of a network protocol that is being implemented on
the Autonomously Managed Power System, AMPS breadboard at
NASA/MSFC. The AMPS breadboard is being used to develop and test
higher level control and expert system programs being developed
for power system management [3].

3. Power System Description

The power system for a spacecraft will consists of one or
more of each of three functional elements. The power generation
center, PGC, (e.g., solar arrays) generates the electrical power
for the spacecraft. The power storage center, PSC, (e.g., banks
of batteries) stores energy until needed. Load centers, LC,
switch the power from the distribution busses to the loads.

An autonomous power system can be thought of as system in
which the monitoring and control hardware are distributed to each
functional element and are connected by a network. The power
control center, PCC, is the central computer(s) on which the



high level programs run. Each PGC, PSC, and LC will contain the
hardware and software to monitor (and maybe control) the
voltages, currents, and temperatures in the center and monitor
and control the settings of the switches that connect the center
to the power bus.

The AMPS test facility currently features the following.

1. A programmable solar array simulator which supplies 220 +/- 20
VDC directly to three power channels with a maximum power output
of 75 kW.

2. An energy storage simulator which consists of a battery with
168 commercial nickel-cadmium (Ni-Cd) cells serially connected to
provide a nominal DC voltage of 220 volts and a capacity of 189
ampere-~-hours.

3. A load simulator which consists of nine resistive loads and
one dynamic load that dissipate a total of 24 kW of power when
operated at 200 VDC.

In addition, three Motorola 68000 microcomputer based
controllers provide data retrieval and low-level decision-making
for the power system with a NCR Tower based host computer
providing overall power system management and programmability for
flight power system simulation.

4. Protocol Requirements

This section will present the list of protocol requirements
that were derived from the physical layout of the power system
and the monitoring and control requirements of the overall power
management system. The objective in developing this protocol was
to make the protocol as simple as possible and still satisfy the
requirements of the power system.

The following 1is a 1list of the assumptions made that
simplified the protocol.

1. The bus topology will be used. Therefore, there is no need
for routing information, all stations are on the same line.

2. Once the network is initialized there will not be a need to
open and close sessions, i.e., all the stations stay on the line
all the time.

3. All the messages will be short, on the order of 4 to 200 bytes
(our analysis, [1], and [2] support this).

4. Because the physical length of the network will be short,
i.e., it will be totally confined to be within the space craft,

6



the protocol will not need to be as robust as some of the more
common protocols.

The following is a list of the requirements of the protocol.

1. Since the power system must be controllable in real time, the
protocol must be capable of processing (from the transmitting
application to the receiving application) messages in times on
the order of 10 ms to 100 ms. (In [2] a study was performed that
indicates for a power system to have a reaction time of_ 0.1
seconds a communication bit rate of on the order of 10° is
needed.)

2. The protocol must be able to initialize or re-initialize
itself.

3. The protocol must be able to add or remove stations at will.

4. Since the functional elements are physically dispersed, the
protocol must have the capacity to uniquely address an arbitrary
number of stations.

5. Since this is a control system the protocol must insure that
each message is delivered to the application in the order sent.

Given these requirements the question arises "Is it possible
to use a defined protocol such as TCP/IP [4] or DDCMP ([5]?2"
There are two disadvantages to using TCP/IP: 1) the amount of
computer time needed to process each message and 2) the number of
over head bytes in each message (minimum of 40). The major draw
back of TCP/IP is, of course, the amount of computer time
required. For this reason TCP/IP was rejected. Since the power
system environment is more constrained then the environment for
which DDCMP was designed, the protocol did not need all the
capabilities of the message exchange section of DDCMP.

The protocol developed is on the level of DDCMP. Although
not a requirement, the protocol assumes that it is working on top
of Ethernet hardware such as the ENP-30 card [6],[7]. This card
performs two of the three functions of DDCMP: framing and 1link
management (as does most network hardware). Some of but not all
of the message exchange features were incorporated. The ability
to use logical station addresses was added.

5. Protocol Description

This section will give an over view of the protocol. For a
detailed description of the protocol see the specification in
Appendix A. The following is a list of the main attributes of
the protocol.



1. The PCC initializes the network and establishes a session with
each other element on the power system network.

2. The network is self-initializing and can re-synchronize
itself.

3. Every packet is numbered.

4. Messages will be passed to the application program in the
correct order.

5. Every message is acknowledged.
6. There is a sliding acknowledgement window.

7. Messages are capable of being pipelined, i.e., messages can be
accepted before previous acknowledgements reach the sender.

8. There is a re-transmission of messages that have not been
acknowledged within the time out period.

9. There is a mapping between logical power system elements’
names and physical Ethernet addresses.

The computer system in each power system element is doing
two distinct operations: processing communication messages and
performing its specific monitor and/or control functions. The
present breadboard uses a simple scheme of two CPUs running in
parallel. One runs the protocol; the other runs the application
program. The two computers communicate through shared memory.
This is faster and simpler than one CPU with a complex operating
system that supports multi-processing.

The protocol is designed to be the interface between
application programs and the Ethernet hardware. The application
programs generate messages that are to be sent to other stations.
They pass these messages to the protocol. The Ethernet hardware
does the actual transmitting and receiving of messages over the
physical wire. To transmit a message the Ethernet hardware is
given the packet to be sent. The hardware sends the packet over
the cable and is responsible for assuring that the message is
transmitted correctly, i.e., it will retransmit the packet if it
detects a collision. When the Ethernet hardware receives a
packet, it checks the wunique station address and cyclic
redundancy code, CRC, and only accepts packets which are
addressed to the station and in which no errors have been
detected.

The philosophy of the implementation of the protocol is:
messages are never moved around; only pointers to the messages
are moved. This resulted in an implementation based on stacks



and queues and results in the ability of the protocol to quickly
process messages.

On a very high level the protocol can be viewed as follows.
For the receive function: the Ethernet hardware stores a
received message in the shared memory of both processors and
passes a pointer to the message to the protocol; the protocol
passes the pointer to the message to the application program.
For the transmit function: the application program creates a
message in shared memory and passes a pointer to the message to
the protocol which in turn passes the pointer to the Ethernet
hardware which transmits the message.

The protocol first initializes the network then moves round
robin between three states: transmit state, receive state, and
time out state. The protocol in the PCC initializes the network
by sending a packet, in broadcast mode, requesting all other
stations to identify themselves. Each station sends back its
logical name and Ethernet address. Then in each station the
protocol will enter the transmit state and check if there is a
message to send. If so the message will be sent. If not the
protocol will enter the receive state and check if there are
messages to be moved to the application program. If so, the
messages are moved. If not, the protocol will enter the time out
state. If a time out has occurred, unacknowledged messages are
sent again and the timer is reset. Then the protocol enters the
transmit state, etc.

When the application has a message ready to be transmitted,

it sets the Go-Flag. When the protocol enters the transmit
state, the protocol tests the Go-Flag and when set makes a packet
out of the message. The protocol resets the Go-Flag which

indicates to the application that the message has been sent. The
protocol combines the pointer to the message with a unique packet
number and other data needed by the Ethernet hardware to make a
packet. The protocol then passes a pointer to the packet to the
Ethernet hardware. The hardware transmits the packet (but does
not remove the packet from memory) and places the pointer to the
packet on the wait for acknowledgement stack, WFASk.

As packets are received by the Ethernet hardware they are
placed in shared memory and a pointer to the packet is placed on

the receive control block stack, RCBSk. The protocol monitors
the RCBSk and processes any packets found in the queue. The
packets can be either an acknowledgement or a message. If the
packet is an acknowledgement, the WFASk is checked for
corresponding message packet(s). (There is a sliding
acknowledgement window on packet numbers, so more than one packet
can be acknowledged with only one acknowledgement packet.) All
message packets in the WFASk queue that have been acknowledged
are deleted from the WFASk and memory. If the packet is a

message packet, the unique packet number is checked against the

9



expected number for the packet. If the numbers are the same the
packet 1is broken apart and the pointer to the message is placed
on the command buffer stack, CBSk. If the numbers are not the
same, the pointer is placed back at the end of the RCBSk queue.
(A packet has been received before its predecessor has been
correctly received.) Every message packet is acknowledged. The
protocol creates a acknowledgement packet which is transmitted by
the hardware. (Acknowledgement packets are automatically removed
from the WFASk.) The application program monitors the CBSk.
When it detects messages in the CBSk queue, it processes the
messages in the order in which the messages are on the CBSk.
(This insures that messages are processed in the order sent by
the other station.)

The time-out function re-transmits any packets that are on
the WFASk when a time out occurs. If the packet 1is not
acknowledged within the time out period, the packet’s pointer is
taken off the WFASk and passed to the hardware to re-transmit
the packet. The Ethernet hardware puts the pointer back on the
WFASk. When the packet is acknowledged, its pointer is deleted
from the WFASk and the message memory freed.

6. References

[1] TRW, "Space Power Distribution System Technology, Final
Report," Vol. 2, 1983, TRW Report No. 34579-6001-UT-00.

[2] Martin Marietta Aerospace, "Space Station Automation of
Common Mode Power Management and Distribution, Interim Final
Report," 1989, MCR-89-516.

[3] Weeks, D.J., "Expert Systems in Space," IEEE Potentials, Vol.
6, No. 2, 1987.

[4] Tanenbaum, A. S., Computer Networks, Prentice Hall, 1988.

(5] DEC, "Digital Data Communications Message Protocol, DDCMP,"
(Sspecification), March 1, 1978, AA-D59SA-TC.

[6] Communication Machinery Corporation, "Ethernet Node
Processor, ENP-30 Users Guide," 1985.

[7] Communication Machinery Corporation, "Ethernet Node
Processor, K-1 Kernel Software User’s Guide,"™ 1985.

10



Appendix A Protocol Specification
7. Protocol Definitions

Buffer is an array of storage in which node address, status,
command names, and data are stored.

Ccontrol block is an array of storage which contains control
information to/from the Kernel and an address of a buffer.

Command is a message to level 7 of the network. In this
system a command is generated and interpreted by the system
software.

Queue is a type of stack in which the bottom item is the
next item accessed, i.e., a circular stack in which items are put
in one end and taken out the other.

Function is the software that generates and interpret
commands.

Node is a sender/receiver on the network.

LIFO is a type of stack in which the top item is the next
item accessed, i.e., a push down stack.

Packet is a message to level 3 of the network. In this
system a packet is interpreted by the protocol software. Packets
usually contain commands. But there are packets that are used

only by the protocol software and never seen by the system
software, e.g., an acknowledgement packet. A packet consists of
a control block and a buffer.

Stack is an array of storage with associated pointer to
indicate the start of the stack, the end of the stack, and where
to access data in the stack.

Station consists of a node and the computer and other
hardware that interface and control the power hardware.

The following is a 1list of the abbreviations and their
definitions. ‘

general

NM, network manager

LCC, load center controller

PSC, power source controller

RPC, remote power controller

EPSC, electrical power system controller

11



DNAd,
RBAd,
SBAd,
SNAd,

BVAr,

addresses

destination node address
receive buffer address
send buffer address
sending node address

arrays -- these arrays store the present status
values for the system

battery voltage array

LCDTAr, LC diode temperature array
LCPAr, LC power array

PSPAr, PS power array

PSTAr, PS temperature array

SDAr,

switch data array

array pointers -- points to the start of the
corresponding array

BVAPt, battery voltage array pointer
LCDTAPt, LC diode temperature array pointer
LCPAPt, LC power array pointer

PSPAPt, PS power array pointer

PSTAPt, PS temperature array pointer

SDAPt, switch data array pointer

ICBk,
IRBK,

RCBK,

SCBK,

TCBk,

blocks =--
initialization command block
initialization response block

receive control block

A RCBK is used by the Kernel to pass the information about a
received packet. The RCBk contains the address of the
buffer in which the Kernel placed the data of the packet.
There will be RCBCn (receive control block constant) number
of RCBks that physically reside in the RAM on the ENP-30
card. Table 4 shows the definition of the fields in a
RCBk.

status control block

transmit control block
A TCBk contains the information needed for the Kernel to
form and transmit a packet. A TCBK contains the address of
the buffer containing the data to be transmitted. There
will be TCBCn (transmit control block constant) number of

12



TCBks that physically reside in the RAM on the ENP-30 card.
The location of the fields in the TCBK is shown in Table 3.

TOCBk, time out control block

A TOCBk contains the
portion of the Kernel.

information needed for the timer
The location of the fields in the

TOCBk are shown in Table 5.

ALCn
ANACn,
BCn,
BLCn,
CBSCn,
HLCn,
ITCBSCn,
RCBCn,
RCBSCn,
SNCn,

TCBCn,
TOCn,

WFASCn,

constants
address 1length constant -- number of bytes 1in an
address (2)
active node address constant -- size of ANASk (16)
buffer constant -- number of buffers (32)
buffer length constant -- number of bytes in a buffers
(256)

command buffer stack constant number of addresses
locations in the command buffer stack (4)

header length constant -- number of bytes in the header
(16)

idle transmit control block stack constant -- number of
address locations on the idle transmit control block
stack (20)

receive control block constant -- number of RCBks (16)
receive control block stack constant -- number of
address locations on the receive control block stack
(20)

station name -- the unique name of the station, i.e.,
LCCl1l, EPSC, etc.

transmit control block constant -- number of TCBKs (16)
timeout constant -- number of 2 ms. increments of time

between timeouts (2)

wait for acknowledgement stack constant number of
address locations in the wait for acknowledgement stack
(20)

fields

AKFd, acknowledgement field

ANAFd,
ANNFd,

active node address field
active node name field

ANRPNFd, active node receive packet field
ANTPNFd, active node transmit packet field
BAFd, buffer address field

CNFQ,

command name field

DAFd, destination address field

ICBESAF4,
ICBLAFFd,

ICBMFA4,

initialization command block Ethernet station address
field
initialization command block 1logical address filter
field

initialization command block mode field

13



ICBNRDFd, initialization command block number receive descriptor
field

ICBNTDFd, initialization command block number transmit descriptor
field

ICBRIHAFd, initialization command block receive interrupt handler
address field

ICBTIHAFd, initialization command block transmit interrupt
handler address field

IRBESAFd, Initialization response block Ethernet station address
field

IRBSRAFd, Initialization response block status routine address
field

IRBRRAFd, Initialization response block receive routine address
field

IRBTRAFd, Initialization response block transmit routine address
field

IRBTORAFd, Initialization response block timer routine address
field

DLFd, data length field

PNFd, packet number field

RAFd, receive address field

RBAFd, receive buffer address field

RBLFd, receive buffer length field

RBSFd, receive buffer status field

SFd, select field

SAFd, source address field

SCBFCFd, status control block function code field

SCBRFd, status control block return field

SCBSBAFd, status control block statistics block address field

SNFd, station name field

TBAFd, transmit buffer address field

TBLFd, transmit buffer length field

TSFd, time stamp field

TOFd, timeout field

TOECFd, timeout event count field

TOSAFd, timeout subroutine address field

flags

PRFg, protocol ready flag
RTFg, retransmit flag
SBFg, send buffer flag

Numbers -- constants

ANANo, active node address number
CNo, command number

RBNo, receive buffer numbers
RPNo, receive packet number

TBNo, transmit buffer number

14



TPNo,

ANOs,

transmit packet number

Offsets
active node offset (9 bytes)

ANAFOs, active node address field offset (0 bytes)
ANNFOs, active node name field offset (6 bytes)
ANTPNFOs, active node transmit packet number field offset (7

bytes)
ANRPNFOs, active node receive packet number field offset (8
bytes)
DAFOs, destination address field offset (0 bytes)
SAFOs, source address field offset (6 bytes)
AKFOs, acknowledgement field offset (12 bytes)
SNFOs, station name field offset (13 bytes)
PNFOs, packet number field offset (14 bytes)
DLFOs, data length field offset (16 bytes)
CNFOs, command name field offset (18 bytes)
SFOs, select field offset (20 bytes)
DOs, data offset (22 bytes)

RBAFOs, receive buffer address field offset (8 bytes)
RBLFOs, receive buffer length field offset (6 bytes)

RBSFOs, receive buffer status field offset (4 bytes)
RMLFOs, receive message length field offset (12 bytes)
RTFOs, retransmit flag offset (6 bytes)

TBAFOs, transmit buffer address field offset (8 bytes)
TBLFOs, transmit buffer length field offset (6 bytes)
TOSAFOs, time out subroutine address field offset (8 bytes)
TOECFOs, time out event code field offset (12 bytes)

stacks and queues

ANASK, active nodes address stack -- LIFO (ANACn * ANOs bytes)

The ANASk will contain information on the nodes that are
communicating with this node. The ANASk will contain four
fields for each active node: active node address field,
ANAFd, active node name field, ANNFd, active node transmit
packet number field, ANTPNFd, and active node receive packet
number field, ANRPNFd. This list will be ANACn nodes deep.
The ANAFd contains the 6 byte address of a node to which
this node is communicating. The ANNFd contains the unique
name (number) of the active node, see table 2. The ANTPNFd
will contain the transmit packet number, TPNo, for the
number of the next packet to be transmitted. The ANRPNFd
will contain the receive packet number, RPNo, for the number
of the next packet to be received from the address. [The
TPNo will be inserted into the buffer before the packet is
transmitted. The RPNo will be compared to each packet from
the address. If the packet number is not the same as the
RPNo, the command will be ignored. The packet will be
acknowledged. ]

15



ANAFd ANNFd ANTPNFA ANRPNFd
(6 bytes) (1 byte) (1 byte) (1 byte)

active node |6 byte address |unique name |variable |variable

active node |6 byte address |[unique name |variable [variable

(o]
(o]
o

active node |6 byte address |unique name |variable |variable

CBSk, command buffer stack -- queue (ALCn * CBSCn bytes)
The CBSk contains the addresses of the buffers which contain
the commands that are waiting to be processed. The commands
are processed in a first in - first out fashion. The CBSOt
points to the next buffer to be processed. The CBSIn points
to the where the next buffer address will be stored.

ITCBSkK, idle transmit control block stack -- LIFO (ALCn *
ITCBSCn bytes)
The ITCBSk contains the addresses of TCBKs that are not in
use. When a TCBk is needed it is popped off this stack.

IBSk, idle buffer stack -- LIFO (ALCn * BCn bytes)
The IBSk contains the addresses of the buffers not in use.
There will be BCn (buffer constant) of buffers. Each

buffer will be BLCn (buffer length constant) bytes long.
The buffers will reside in the ENP-30's RAM.

RCBSk, receive control block stack -- queue (RCBSCn * ALCn
bytes)
The RCBSkK contains the addresses of the RCBks of received
packets.

WFASK, waiting for acknowledgement stack =-- queue (WFASCn *
ALCn bytes)
The WFASk contains the address of TCBks of packets that have
not been acknowledged. When a packet is acknowledged the
corresponding TCBkKk is replaced with the last TCBk (pointed
to by WFASOt) on the stack. The WFASOt is incremented.

stack pointers

head --- points to the start of a stack, the smallest absolute
address, never changes
tail --- points to the end or top of a stack, the largest

absolute address, never changes

16



in --- points to the location in which to store the next entry
in a queue, increases up to tail then reset to head

out --- points to the location from which to get the next piece
of data in a queue, increases up to tail then reset to
head

push/pop- points to the location for the top of the LIFO stack,
pop from it, push at 1 + top

modules increment -- increment pointer, if greater than tail

set equal to head

ANASHd, active nodes address stack head

ANASPp, active nodes address stack push/pop
ANAST1, active nodes address stack tail

CBSHA, command buffer stack head

CBSIn, command buffer stack in

CBSOt, command buffer stack out

CBST1, command buffer stack tail

ITCBSHd, idle transmit control block stack head
ITCBSPp, idle transmit control block stack push/pop
ITCBST1, idle transmit control block stack tail
IBSHd, idle buffer stack head

IBSPp, idle buffer stack push/pop

IBST1, idle buffer stack tail

RCBSHd, receive control block stack head
RCBSIn, receive control block stack in

RCBSOt, receive control block stack out

RCBST1, receive control block stack tail
WFASHd, waiting for acknowledgement stack head
WFASIn, waiting for acknowledgement stack in
WFASOt, waiting for acknowledgement stack out
WFAST1, waiting for acknowledgement stack tail

subroutine calls to the Kernel

KINIT, call to the Kernel initialize routine. pass address of

ICBk

KOUT, call to the Kernel timeout routine. pass address of TOCBk

KRCV, call to the Kernel receive routine. pass address of RCBk

KSTS, call to the Kernel control/status routine. pass address of
SCBk

KXMT, call to the Kernel transmit routine. pass address of TCBk

17



8. Protocol design specification

8.1. Level 1 and part of level 2 of the protocol will be
implemented by the ENP-30 board or equivalent.

8.2. Node to node protocol -- Each packet will contain the 48 bit
destination node address, DNAd, contained in the destination
address field, DAFd, for the packet and the 48 bit source node
address, SNAd, contained in SAFd of the packet, as shown in table
1. A node will only process packets addressed to it.

8.3. Each packet will have a packet number field, PNFd. There
will also be an acknowledgement field, AKkFd. The node that
originated the command will place in the PNFd the packet's number
and set the AkFd to indicate that the packet is a command. The
receiving node will return to the sender a packet that contains
in the PNFd the number of the packet sent and the AKFd set to
indicate an acknowledgement. If a packet is not acknowledged
within the time-out interval, the packet will be sent again.

8.4. The protocol will use the following instructions to
establish a network.

Reset Network -- the receipt of this command will cause the
node to reset itself, in particular the node will do the
following: :

A. Clear its ANASk (move the head pointer to the start of the
stack) ;

B. The return of an acknowledgement packet is optional;

cC. Clear the WFASk;

D. Clear the RCBSKk:
E. Clear the CBSk.

Network initialize [w/o-ack] (with out acknowledgement)--
will initialize the network. It will be sent by the network
manager. Each receiving node will do the following:

A. Return a network initialize [ack] packet;
B. The return of an acknowledgement packet is optional;
D. Place the data from the sending node on the ANASKk;
Network initialize [w-ack] (with acknowledgement) -- will

place the data from the sending node into the ANASk of the
receiving node. An acknowledgement packet is required.

8.5. Network manager =-- The EPSC will be designated as the
network manager. Whenever the network is initialize, the network
manager, NM, will send out 1in, broadcast mode, a network
initialize [w/o-ack] packet. This packet requests that each node
on the network send the NM the receiving node's name and address.
Each node must have embedded in its software a unique name, e.g.,
LCC1, LcC2, PSCl, PSC2, expert system, etc. This is necessary to
enable the EPSC to control the individual stations of the system
if there are more than one of each type of station on the

18



network. When a node receives a network initialize [w/o-ack]
packet, the node will send the node's address and name in a
initialize network [w-ack] packet until the packet Iis
acknowledged. After the network is initialized, each time a node
receives a packet, it will compare the contents of the SAFd to
the contents of each ANAFd in the ANASKk. If there is not a
match, the packet is ignored.

8.6. The description of the protocol will be divided into five
sections: general information, initialization, transmit state,
receive state, and timeout state. The protocol is based on the
philosophy of a stack of buffers in which data is stored, and the
moving of the addresses of these buffer. Once data is received
or generated in the node, the data is not copied to any other
buffer; the pointer to the buffer is moved. There is a set of
stacks between which the addresses of the buffers are moved.
There are also flags which are used to indicate the status of
portions of the protocol.

General information

After initialization the protocol is in a loop between three
states: transmit state, receive state, and timeout state. The
protocol loops through the testing of the SBFg, testing of the
RTFg, and entering the receive state.

The SBFg is set to one by functions in the operating system
when a buffer is ready to be sent to another station. The buffer
will contain all the information necessary to form a packet. If
the SBFg is set, then the protocol will enter the transmit state
and form and transmit a packet of data to the desired node.

The protocol always enters the receive state. It then
cleans up the WFASkKk and processes any packets on the RCBSK.
When a node receives a packet, the Kernel places the RCBk on the
RCBSk. The packet could be either an acknowledgement, a command,
or one of the network initialize packets.

The Kernel has an internal clock that will, by setting the
RTFg to one, inform the protocol when it is necessary to resend
packets that have not been acknowledged. If the RTFg is set,
the protocol will retransmit any packets that have not been
acknowledged.

Initialization

On power up or reset, the Kernel initializes itself and the
Lance. Then the Kernel waits for the operating system to down
load the protocol software and set the go bit in the Kernel's
mailbox. Once the go bit has been set, the Kernel passes control
of the ENP-30 microprocessor to the protocol software. The

19



following is a list of the operations necessary to initialize the
protocol:

A‘

Only

J.

The protocol calls the Kernel's initialization command.
This command returns the addresses of the Kernel's status
subroutine, receive subroutine, transmit subroutine, timer
subroutine, and Ethernet node address.

All the stack pointers are set to the start of their
respective stacks.

The addresses of all the buffers are placed on the IBSK.

For each RCBK a buffer address is popped off IBSk and
placed in the RBAFd. Each RCBk is passed to the Kernel
through a receive subroutine call.

The ANASk is cleared.
The RTFg and SBFg are set to zero.
All the TCBks are cleared and placed in the ITCBSK.

The Kernel's status subroutine is called, which starts the
Lance. This enables the node to start to receive and
transmit packets.

The PRFg is set to one. This enables the operating system
to continue.

in the EPSC will the following be implemented.

The EPSC initializes the network by making and sending a

network initialize [w/o-ack] packet as follows:

a. A TCBk is popped off the ITCBSk:

b. A buffer is popped off the IBSk and the address placed
in the TBAFd of the TCBK.

c. The contents of HLCn is placed in the TBLFA.

d. The following data is placed in the fields of the

buffer:

1. The broadcast Ethernet address (all 1's) is placed
in DAFA4;

2. The node's Ethernet address will be placed in the
SAFd4d;

3. AkFd will be set to indicate a network initialize
[w/o—-ack] packet;
4. The station name (number) (see table 2) will be
placed in the SNFQ4:;
5. The PNFd is set to zero.
e. Then the address of the TCBk is passed to the Kernel
through a transmit subroutine call.

20



Transmit State

If the SBFg is a one when checked, the protocol will enter
the transmit state. The data flow diagram for the transmit state
is shown in figure 1. The protocol uses a TCBK to make a
packet. The last two TCBks on the ITCBSk are reserved for use by
the receive state protocol.

A. Therefore, if ITCBSPp -~ ITCBSHd is less than three, a packet
can not be made, and the protocol exits the transmit state.

B. If more than two TCBks are on the ITCBSk, then the protocol
makes a packet as follows:

a. A TCBK is popped off the ITCBSK:

b. The buffer address in SBAd is transferred to the TBAFd
of the TCBk. (See table 3 for a description of the
fields in the TCBK.)

c. The length of the data in the buffer (DLFd + HLCn) is
placed in the TBLFAd.

d. The following data is placed in the respective fields
of the buffer if the contents of the LDFd match the
contents of an ANNFd:

1. DAFd will be set to the contents of the ANAFd;

2. The node's Ethernet address will be placed in the
SAF4d;

3. AKFd will be set to indicate a command;

4. The station name (number) (see table 2) will be
placed in the SNFd:;

5. The TPNo from the ANTPNFd of the ANASk for the

receiving node (content of the DAFd equal content
of ANAFd) will be placed in the PNFd.
6. And TPNo will be modules incremented.
e. Then the address of the TCBk is passed to the Kernel
through a transmit subroutine call.
f. The SBFg is set to zero.

c. The protocol exits the transmit state.

After the packet has been transmitted, the Kernel places the
address of the TCBk on the WFASK.

Clean up State

The protocol will in a round-robin fashion enter the clean
upstate. In the clean up state the protocol will clean up the
WFASK.

The protocol removes all the acknowledgement packets or network

initialize [w/o-ack] packets from the WFASK. Starting at the
TCBk pointed to by WFASOt, the AKFd of the buffer of each TCBK is

21



examined. If it is an acknowledgement or a network initialize
[(w/o-ack] packet, the packet is broken apart:
a. The TCBk is pushed onto the ITCBSKk;
b. The contents of the TBAFd is pushed onto the IBSk;
c. The location of the TCBK in the WFASk is filled with .
the TCBk pointed to by WFASOt.
d. And WFASOt is modules incremented.

The protocol then exits the clean up state.

Receive State

The protocol will in a round-robin fashion enter the
receive state. In the receive state the protocol will process
any commands on the RCBSk and update, if necessary, the ANASKk.
The data flow diagram for the receive state is shown in figure
2.

The Kernel maintains a stack of addresses of idle RCBKs.
When the Lance receives a packet the Kernel will supply a RCBK to
Lance. Lance places the data in the buffer of the RCBK. The
Kernel will then, through an interrupt, place the address of the
RCBk on RCBSK.

A. The protocol starts processing the RCBks on the RCBSk. The
protocol starts at the RCBk pointed to by RCBSOt and
processes each RCBk up to RCBSIn. First each packet is
broken apart.

a. If bit 15 of the RBSFd is a zero, then there has not
been an error in the reception of the packet in the
Lance and the packet can be used. The following is
performed.

1. The buffer address in RBAFd is placed in RBAd.
2. A buffer address is popped off of IBSk and placed
in RBAFAd.

b. The RCBK 1is passed to the Kernel in a receive
subroutine call.

Now the AkKFd of the buffer in RBAd is examined. The buffer
can contain either an acknowledgement, a netw